Machine Learning Systems for Detecting Driver Drowsiness

نویسندگان

  • Esra Vural
  • Müjdat Çetin
  • Aytül Erçil
  • Gwen Littlewort
  • Marian Bartlett
  • Javier Movellan
چکیده

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Previous approaches to drowsiness detection primarily make pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to data-mine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learningbased classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy driving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilgisayarlı Görü Yöntemleriyle Sürücüde Uykululuğun Sezimi Detecting Driver Drowsiness Using Computer Vision Techniques

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Here we employ machine learning techniques to detect driver drowsiness. The system obtained 98% performance in predicting driver drowsiness. This is the highest prediction rate reported to date fo...

متن کامل

Drowsy Driver Detection Through Facial Movement Analysis

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Previous approaches to drowsiness detection primarily make pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamin...

متن کامل

Automated Drowsiness Detection For Improved Driving Safety

Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous...

متن کامل

Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks

Statistics have shown that 20% of all road accidents are fatigue-related, and drowsy detection is a car safety algorithm that can alert a snoozing driver in hopes of preventing an accident. This paper proposes a deep architecture referred to as deep drowsiness detection (DDD) network for learning effective features and detecting drowsiness given a RGB input video of a driver. The DDD network co...

متن کامل

Driver Drowsiness Detection by Identification of Yawning and Eye Closure

Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007